# **455.** Studies on Metal Complexes in Solution. Part I. Phthalates of Some Transition Metals.

By I. R. DESAI and V. S. K. NAIR.

Thermodynamic stability constants of the 1:1 complexes of manganese, cobalt, and nickel ions with the phthalate ion have been determined by a precise potentiometric method employing a Harned-type cell, at temperatures in the range  $0-45^{\circ}$ . The thermodynamic quantities,  $\Delta G$ ,  $\Delta H$ , and  $\Delta S$  for the reaction  $M^{2+} + o-C_6H_4(CO_2)_2^{2-} \iff o-C_6H_4(CO_2)_2M$ , have been derived. Also from the variation of  $\Delta H$  with temperature,  $\Delta C_p$  for the reaction has been estimated.

IN other studies on the thermodynamics of ion association,<sup>1</sup> ion pairs of relatively low stability have been investigated. We have extended the studies to more stable complexes of chelate type and followed the effects of substitution and configurational factors on the thermodynamic properties of the complexes. Of the aromatic bivalent anions, phthalate was chosen because it is available in a pure form and because of the fairly high solubility of its complexes with bivalent metals. By taking a higher proportion of  $M^{2+}$  to phthalate, species such as  $M[C_6H_4(CO_2)_2]_2^{2-}$  can be avoided, and the study limited to the 1 : 1 species. The Harned-type cell

H<sub>2</sub>,Pt|KHphthalate,MCl<sub>2</sub>|AgCl|Ag

has been used for studying manganese, cobalt, and nickel phthalates.

<sup>1</sup> Nancollas, J., 1955, 1458.

#### EXPERIMENTAL

Stock solutions prepared from "AnalaR" metal chlorides were standardised by gravimetric analysis as silver chloride; agreement between duplicate estimations was better than  $\pm 0.02\%$ . Stock solutions of "AnalaR" potassium hydrogen phthalate were prepared by weight. Exactly 0.01m-hydrochloric acid, prepared from constant-boiling acid, was used in the standardisation of the silver-silver chloride electrodes prepared as described before.<sup>2</sup> The apparatus and procedure were similar to those described previously.<sup>2</sup> Equilibrium was attained only very slowly at the start of each run, so the cells were left overnight at 0° to come to equilibrium and the experiments completed for other temperatures the following day. Once equilibrium had been obtained at one temperature 1.5 hours were required for a constant e.m.f. to be reached at another temperature. E.m.f. readings remained constant within 30 µv for more than 0.5 hr. Since there was no drift in the e.m.f. the chance of interaction between the phthalate and the hydrogen was discounted.

## **RESULTS AND DISCUSSION**

Accurate values for the dissociation of phthalic acid over the range 0-60° are available from the work of Hamer et al.3 who used the cell \*

## H<sub>2</sub>,Pd|H<sub>2</sub>Ph, KHPh (or KHPh, K<sub>2</sub>Ph),KCl|AgCl(s)|Ag(s)

The values of the thermodynamic dissociation constants of phthalic acid obtained by them and used in this work are given in Table 1. In the cell

 $H_2,Pt|KHPh(m_1),MCl_2(m_2)|AgCl|Ag$ 

the concentration of hydrogen ions is given by

$$-\log \left[\mathrm{H}^{+}\right] = (E - E^{0})/k + \log_{10} 2m_{2} + \log_{10} \gamma_{\mathrm{H}} + \gamma_{\mathrm{Cl}} -$$

where E is the corrected e.m.f., m represents molality, k = 2.3026 RT/F, and  $\gamma$  is activity coefficient. For the concentrations of various ionic species one can write

$$m_1 = [H_2Ph] + [HPh^-] + [Ph^{2-}] + [MPh],$$
  
and  $m_2 = [M^{2+}] + [MPh].$ 

#### TABLE 1.

Thermodynamic dissociation constant of phthalic acid.

|                 | -     |               |       |              |               |            |
|-----------------|-------|---------------|-------|--------------|---------------|------------|
|                 | Temp. | 0°            | 15°   | $25^{\circ}$ | <b>3</b> 5°   | <b>45°</b> |
| $10^{3}K_{1}$   |       | 1.190         | 1.157 | 1.123        | 1.078         | 1.027      |
| $10^6 K_2^{-1}$ |       | <b>3</b> ∙696 | 3.934 | 3.906        | <b>3</b> ·740 | 3.454      |

For electroneutrality,

 $[H^+] + 2[M^{2+}] + m_1 = 2m_2 + [HPh^-] + 2[Ph^{2-}] + [OH^-],$ 

in which [OH<sup>-</sup>] is negligible at the pH's obtained.

 $K_1$  and  $K_2$  are the thermodynamic first and second dissociation constants of phthalic acid. Brannan and Nancollas<sup>4</sup> have shown that for ion association between nickel and substituted malonate ions the Davies equation <sup>5</sup>

$$-\log \gamma_z = A z^2 [I^{\frac{1}{2}}/(1+I^{\frac{1}{2}}) - 0.2I]$$

can be used for computing activity coefficients up to an ionic strength of 0.2m. In the present work, therefore, I being always less than 0.1m, the Davies equation has been used. Ionic strength,

$$I = \frac{1}{2} \{ [\mathrm{H}^+] + 6m_2 - 3m_1 + [\mathrm{HPh}^-](5 + 8K_2/[\mathrm{H}^+]\gamma_2 + 4[\mathrm{H}^+]\gamma_1^2/K_1) \}$$

\* Throughout this paper, Ph denotes phthalate.

- <sup>2</sup> Nair and Nancollas, J., 1958, 4144. <sup>3</sup> Hamer, Pinching, and Acree, J. Res. Nat. Bur. Stand., 1945, 35, 539; Hamer and Acree, *ibid.*, p. 381.
  - <sup>4</sup> Brannan and Nancollas, Trans. Faraday Soc., 1962, 58, 354.

<sup>5</sup> Davies, J., 1938, 2093.

Successive approximations of the above equations to constant ionic strength enabled the various ionic concentrations to be evaluated; the stability constant of MPh was calculated from the relation

$$K = [MPh]/[M^{2+}][Ph^{2-}]\gamma_2^2.$$

Table 2 gives the results for manganese, cobalt, and nickel phthalates for all temperatures; the last column shows the constancy of the K values. At any one temperature the deviation among the K values is always less than 1%. There are only very scanty recorded data on stability constants of bivalent metal phthalates; \* as would be expected the  $\log_{10} K$  values of all these three transition-metal ions are higher than the corresponding values for barium (2.33) and calcium <sup>7</sup> (2.43) at 25°. The K values increase in the order Mn < Co < Ni, as observed by Irving and Williams <sup>8</sup> for a large number of ligands.

|    |               |                | •                  | <b>Fable 2</b> .       |                              |                    |                           |
|----|---------------|----------------|--------------------|------------------------|------------------------------|--------------------|---------------------------|
|    |               |                | Mang               | anese phthalate        |                              |                    |                           |
|    |               | 1              | 2                  | 3                      | 4                            | 5                  | 6                         |
|    | $10^{3}m_{1}$ | 8.9623         | 12.942             | <b>16·490</b>          | 9.9301                       | 13.784             | 17.939                    |
|    | $10^3 m_2$    | 8.8445         | 9.4789             | 11.425                 | 8.9468                       | 10.598             | $12 \cdot 487$            |
|    | $(E - E_0)$   | 10³I           | $10^{4}[H^{+}]$    | 10 <sup>3</sup> [HPh-] | $10^{4}$ [Ph <sup>2-</sup> ] | $10^{4}$ [MPh]     | K                         |
|    |               |                |                    | At 0°                  |                              |                    |                           |
| 1. | 0.31163       | 34.85          | 1.410              | 7.545                  | 3.882                        | 3.909              | (461)                     |
| 2. | 0.30947       | <b>40·49</b>   | 1.472              | 10.908                 | 5.602                        | 5.306              | <b>`444</b> ´             |
| 3. | 0.30417       | 49.53          | 1.573              | $13 \cdot 845$         | 7.041                        | 6.971              | 434                       |
| 4. | 0.31163       | 36.14          | 1.401              | 8·387 <sub>5</sub>     | 4.387                        | 4.026              | 423                       |
| 5. | 0.30637       | 44.57          | 1.522              | 11.587                 | 5.910                        | 5.8385             | 437                       |
| 6. | 0.30170       | 54.00          | 1.620              | 15.031                 | 7.617                        | 7.734              | 429                       |
|    |               |                | ·                  |                        |                              |                    | $433 \cdot 4 \pm 3$       |
|    |               |                |                    | At 15°                 |                              |                    |                           |
| 1. | 0.32802       | 34.81          | 1.463              | 7.479                  | 4.030                        | <b>4</b> ·116      | 483                       |
| 2. | 0.32538       | 40.35          | 1.550              | 10.787                 | 5.718                        | 5.834              | 497                       |
| 3. | 0.31983       | 49.36          | 1.656              | 13.689                 | 7.201                        | $7.629_{5}$        | 484                       |
| 4. | 0.32761       | <b>36·03</b>   | 1.477              | 8·293                  | 4.467                        | 4.457              | 477                       |
| 5. | 0.32209       | <b>44·41</b>   | 1.604              | 11.454                 | 6.028                        | 6.423              | 490                       |
| 6. | 0.31715       | 53.79          | 1.709              | 14.855                 | 7.767                        | 8.509              | 483                       |
|    |               |                |                    |                        |                              |                    | $485.7 \pm 2.6$           |
|    |               |                |                    | At 25°                 |                              |                    |                           |
| 1. | 0.33920       | 34.72          | 1.484              | $7 \cdot 432$          | <b>3</b> ⋅958                | <b>4·436</b>       | 544                       |
| 2. | 0.33646       | 40.21          | 1.571              | 10.718                 | 5.622                        | 6.283              | 560                       |
| 3. | 0.33076       | 49.19          | 1.677              | 13.604                 | 7.093                        | 8.173              | 542                       |
| 4. | 0.33869       | 35.90          | 1.503              | 8.236                  | 4.371                        | 4.851              | 545                       |
| 5. | 0.33281       | 44.20          | 1.643              | 11.360                 | 5.854                        | 7.089              | 574                       |
| 6. | 0.32798       | 5 <b>3</b> ·60 | 1.733              | 14.758                 | 7.644                        | 9.128              | 543                       |
|    |               |                |                    |                        |                              |                    | $551 \cdot 3 + 5 \cdot 2$ |
|    |               |                |                    | At <b>3</b> 5°         |                              |                    |                           |
| 1. | 0.35076       | 34.59          | 1.481              | 7.393                  | 3.810                        | 4.776              | 626                       |
| 2. | 0.34822       | <b>40</b> ·10  | 1.553              | 10.679                 | 5.476                        | $6.615_{5}$        | 623                       |
| 3. | 0.34200       | <b>48</b> ·96  | 1.678              | 13.524                 | 6.814                        | 8·854 <sup>°</sup> | 631                       |
| 4. | 0.35039       | 35.80          | $1 \cdot 492$      | $8 \cdot 201$          | 4.237                        | 5.156              | 614                       |
| 5. | 0.34468       | 44·13          | 1.610              | 11.337                 | 5.769                        | 7.273              | 614                       |
| 6. | 0.33934       | $53 \cdot 41$  | $1.720_{5}$        | 14.692                 | 7.418                        | 9.678              | 612                       |
|    |               |                | v                  |                        |                              |                    | $620.0 \pm 3.3$           |
|    |               |                |                    | At 45°                 |                              |                    |                           |
| 1. | 0.36287       | <b>34</b> ·48  | 1.451              | 7.368                  | 3·618 <sub>5</sub>           | 5.080              | 720                       |
| 2. | 0.36007       | 39.89          | 1.532              | 10.628                 | 5.160                        | 7.176              | 739                       |
| 3. | 0.35360       | <b>48</b> .69  | 1.659              | $13 \cdot 451$         | 6·409                        | 9.613              | 754                       |
| 4. | 0.36222       | 35.63          | 1.476              | 8.158                  | 3.977                        | 5.622              | 735                       |
| 5. | 0.35633       | 43.90          | 1.593              | 11.275                 | 5.417                        | 7.926              | 736                       |
| 6. | 0.35078       | 53·09          | 1·706 <sup>°</sup> | 14.602                 | 6.956                        | 10.568             | 738                       |
|    |               |                |                    |                        |                              |                    | $737.0 \pm 3.3$           |

\* For nickel a value of 2.14 for  $\log_{10} K$  at I = 0.1M has been reported <sup>6</sup> (which corresponds to the value for  $\log_{10} K$  of 3.02) at 25° from a pH-titration method.

<sup>6</sup> Yasuda, Suzuki, and Yamasaki, J. Phys. Chem., 1956, 60, 1649.

<sup>7</sup> Topp and Davies, J., 1940, 87.
<sup>8</sup> Irving and Williams, J., 1953, 3192.

2363

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                |                           | TABLE 2              | . (Contini             | ied).                          |                                    |                    |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|---------------------------|----------------------|------------------------|--------------------------------|------------------------------------|--------------------|--------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                                |                           | Cob                  | alt phthalate          |                                |                                    |                    |                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | 1                              | 2                         | 3                    | 4                      | 5                              | 6                                  | 7                  | 8                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ${10^3m_1 \over 10^3m_2}$ | $\dots 6.9630 \\ \dots 5.3403$ | 8·7632<br>7·0530          | $12.675 \\ 9.1875$   | $16.202 \\ 11.236$     | $7 \cdot 4545 \\ 5 \cdot 8412$ | 9·7523<br>8·9269                   | 14·563<br>10·940   | $17.104 \\ 12.051$ |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | $(E - E_0)$                    | 10³ <i>I</i>              | $10^{4}[H^{+}]$      | 10 <sup>3</sup> [HPh-] | $10^4$ [Ph <sup>4</sup>        | <sup>2-</sup> ] 10 <sup>4</sup> [M | [Ph]               | K                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                |                           |                      | At 0°                  |                                |                                    |                    |                    |
| 2. 0'31085 29'30 1384 1'310 3'033 3'330 300 300<br>3. 0'3085 39'30 21 564 10.566 5'033 6'376 (596)<br>4. 0'30303 48'32 1673 13'453 6'3854 8'194 571<br>5. 0'32271 24'02 1'275 6'316 3'2874 4'040 (540)<br>6. 0'30957 45'83 1.667 12'071 5'666 7'223 (596)<br>8. 0'3014 51'48 1'706 14'184 6'729 8'223 538 4'927 581<br>7. 0'30367 45'83 1.667 12'071 5'666 7'223 (596) $\pm 357$<br>1. 0'3375 22'51 1'305 5'847 3'157 3'077 618<br>2. 0'33038 29'17 1'447 7'297 3'791 4'2614 616<br>3. 0'3375 29'17 1'467 7'297 3'791 4'2614 616<br>5. 0'32375 32'45' 1'570 8'464 4'040 5'779 623<br>7. 0'31945 45'72 1'736 11'951 3'115 3'286 6'84 (690)<br>6. 0'3237 3'51 1'570 8'464 4'040 5'779 6'22<br>7. 0'31945 45'72 1'736 11'951 3'115 3'286 6'84 6'20<br>7. 0'31945 45'72 1'736 11'951 3'115 3'286 6'84 6'20<br>7. 0'31945 45'72 1'736 11'951 3'115 3'286 6'84 6'20<br>7. 0'33081 3'8'65 1'6'29 10'419 5'223 6'737 6'22<br>7. 0'31945 45'72 1'736 11'951 3'115 3'286 6'84 6'70<br>4t 25°<br>7. 0'31945 45'72 1'736 11'951 3'115 3'286 6'84 6'70<br>4t 35°<br>7. 0'33062 45'62 1'742 11'892 5'836 5'79 3'099 3'608 7'74<br>4. 0'32984 4'7.99 1'761 13'238 6'255 9'173 6'70<br>5. 0'35107 24'38 1'350 6'177 3'315 3'155 6'690 5'597 6'93<br>7. 0'33062 45'62 1'742 11'892 5'836 '8'87 6'79<br>7. 0'33062 45'62 1'742 11'892 5'836 '8'87 6'79<br>7. 0'33062 45'62 1'742 11'892 5'836 '8'87 6'79<br>7. 0'33062 45'62 1'76'2 10'366 5'037 7'232 7'6'5<br>4. 0'34121 4'7'80 1'752 13'171 6'312 9'716 7'57<br>5. 0'36307 2'2'39 1'345 6'187 3'193 3'815 7'55<br>6. 0'34871 3'530 1'590 7'956 3'841 5'534 7'53<br>7. 0'34205 45'47 1'730 11'836 5'659 1'6'31 9'716 7'57<br>5. 0'3604 3'8'52 1'597 10'317 4'755 7'834 8'95<br>1. 0'3764 5'2'19 1'319 5'741 2'753 4'015 (995)<br>7. 0'33064 3'8'52 1'597 10'317 4'755 7'834 8'95<br>10'377 10'664 4'681 7'834 8'95<br>10'378 1'2'2'1 1'319 5'741 2'753 1'0'16'8 8'901 1'1'4'4'77 7'68<br>8. 0'35057 7'0'72 1'758 5'953 2'856 3'737 (7'18)<br>7. 0'3153 2'562 1'703 11'780 5'345 9'111' 11'849 1'3'265<br>10'377 10'664 4'681 7'897 7'67 1'40 1'757 5'75 4'40 9'858 7'757 1'75 1'10'16'14'19' 10'124'19' 19'255<br>10'376 1'2'2'2'1'452                                                                                                                                                                                                                                                                                                                                  | 1.                        | 0.32519                        | 22.58                     | 1.243                | 5.908                  | 3.093                          | 2.80                               | 02 557             |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.<br>3                   | 0.31085                        | 29.25                     | 1.384                | 7.376                  | 3.093                          | 3.93                               | 30 202<br>76 (506) |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>4</b> .                | 0.30303                        | 48·26                     | 1.673                | 13.453                 | 6.385                          | 8.19                               | 34 571             |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.                        | 0.32271                        | 24.52                     | 1.275                | 6.316                  | 3.287                          | <b>3</b> ∙04                       | 40 (540)           |                    |
| 7. 0.30357 45.83 1.667 12.071 5.666 7.625 (595)<br>8. 0.30114 51.48 1.706 14.184 6.729 5.723 555<br>566.4 $\pm$ 3.8<br>At 15°<br>1. 0.34199 22.51 1.305 5.847 3.157 3.077 618<br>2. 0.3332 29.17 1.447 7.297 3.791 4.261 <sub>4</sub> 616<br>3. 0.32478 38.92 1.630 10.462 5.220 6.664 636<br>4. 0.3180 48.12 1.748 13.12 6.583 8.740 615<br>5. 0.33938 24.45 1.339 6.250 3.357 3.334 (599)<br>6. 0.32597 3.551 1.579 8.046 4.040 5.279 628<br>7. 0.31945 45.72 1.736 11.951 5.862 <sub>8</sub> 8.067 632<br>7. 0.31945 45.72 1.736 11.951 5.862 <sub>8</sub> 8.067 632<br>7. 0.31945 45.72 1.736 11.951 5.862 <sub>5</sub> 9.173 670<br>6. 0.35217 3.551 1.629 10.419 5.229, 6.881 670<br>4. 0.32984 47.99 1.761 13.238 5.225 9.173 670<br>6. 0.33714 35.41 1.597 7.943 5.255 9.173 670<br>6. 0.33714 35.41 1.597 7.943 5.583 8.857 679<br>7. 0.33062 45.62 1.742 11.892 5.836 8.827<br>7. 0.33062 45.62 1.742 11.892 5.836 8.837 679<br>7. 0.33062 45.62 1.742 11.892 5.836 8.8387 679<br>7. 0.33062 45.62 1.730 1.732 13.171 6.312 9.716 757<br>7. 0.34005 45.71 1.462 10.366 5.037 7.323 765<br>7. 0.34005 45.71 1.452 10.376 6.3841_8 5.963 774<br>2. 0.36566 28.97 1.467 7.219 3.602 4.847_8 776<br>7. 0.34205 45.47 1.730 11.836 5.656 8.842 761<br>7. 0.34205 45.47 1.730 11.836 5.963 744<br>7. 0.34205 45.47 1.730 11.836 5.963 744<br>7. 0.34205 45.47 1.730 11.836 5.963 8.841_8 5.963<br>7. 0.34205 45.75 1.725 13.171 6.312 9.716 755<br>7. 0.34205 45.74 1.730 11.836 5.963 7.918 8.916<br>7. 0.35376 4.526 1.703 11.780 5.345 9.418 8.86<br>8. 0.35064 38.52 1.507 10.317 4.755 7.834 895<br>7. 0.34205 45.75 1.725 13.108 5.963 9.418 8.86<br>8. 0.35064 38.52 1.507 10.317 4.755 7.834 895<br>7. 0.34205 45.75 1.725 13.108 5.943 9.418 8.86<br>8. 0.35064 38.52 1.507 10.317 4.755 7.834 895<br>7. 0.35376 4.526 1.703 11.780 5.345 9.418 8.86<br>8. 0.35065 35.15 1.566 7.916 8.911 11.848 186<br>7. 0.35376 4.526 1.703 11.780 5.345 9.418 8.86<br>8. 0.35065 35.15 1.568 7.916 8.911 11.1848 18.86<br>8. 0.35064 38.52 1.507 10.317 4.755 7.784<br>1. 0.31853 2.562 1.438 6.593 2.8                                                                                                                                                                                                                                         | 6.                        | 0.30987                        | 35.60                     | 1.510                | 8.132                  | 3.928                          | 4.92                               | 27 581             |                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.<br>e                   | 0.30357                        | 45.83                     | 1.667                | 12.071                 | 5.666                          | 7.62                               | 25 (595)           |                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.                        | 0.20114                        | 51.40                     | 1.100                | 14.104                 | 0.125                          | 0.12                               | 566.4              | <b>4</b> ± 3·8     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                |                           |                      | At 15°                 |                                |                                    |                    | _                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.                        | 0.34199                        | 22.51                     | 1.305                | 5.847                  | 3.157                          | 3.07                               | 618                |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.                        | 0.33332                        | 29.17                     | 1.447                | 7.297                  | 3.791                          | 4.26                               | $51_5 616$         |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | а.<br>4.                  | 0.31880                        | 30.92<br>48.12            | 1.030                | 10.402                 | 5·220<br>6·583                 | 8.74                               | 04 030<br>LO 615   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.                        | 0.33938                        | 24.45                     | 1.339                | 6.250                  | 3.357                          | 3.33                               | <b>34</b> (599)    |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.                        | 0.32597                        | 35.51                     | 1.579                | 8.046                  | <b>4</b> ·040                  | 5.27                               | 79 `628´           |                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.                        | 0.31945                        | 45.72                     | 1.736                | 11.951                 | $5.862_{s}$                    | s 8∙06                             | 632 632            |                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                |                           |                      | At 25°                 |                                |                                    | 024.2              | 2 ± 3.9            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.                        | 0.35375                        | 22.44                     | 1.317                | 5.815                  | 3.115                          | 3.28                               | 86 684             |                    |
| 3. 0.33621 38.85 1.629 10.419 5.229, 6.881 670<br>4. 0.32984 47.99 1.761 13.238 6.525 9.173 670<br>5. 0.35107 24.38 1.350 6.217 3.315 3.545 660<br>6. 0.33714 35.41 1.597 7.997 3.980 5.597 693<br>7. 0.33062 45.62 1.742 11.892 5.836 8.837 679<br>677.0 $\pm$ 4.4<br>1. 0.36591 22.36 1.308 5.790 3.009 3.508 774<br>2. 0.36656 28.97 1.457 7.219 3.602 4.847 <sub>8</sub> 776<br>3. 0.34776 38.71 1.622 10.366 5.037 7.323 765<br>4. 0.34121 47.80 1.752 13.171 6.312 9.716 757<br>5. 0.36307 24.29 1.345 6.187 3.193 3.815 755<br>6. 0.34871 35.30 1.590 7.956 3.841 <sub>8</sub> 5.934 783<br>7. 0.34205 45.47 1.730 11.836 5.656 8.842 761<br>767.3 $\pm$ 4.57<br>1. 0.37768 22.19 1.319 5.741 2.753 <sub>8</sub> 4.015 (995)<br>2. 0.36877 28.85 1.431 7.190 3.406 5.178 900<br>3. 0.35964 38.62 1.597 10.317 4.755 7.834 895<br>4. 0.35289 47.57 1.725 13.108 5.963 10.368, 884<br>5. 0.37546 24.18 1.322 6.163 3.9016 4.105 883<br>6. 0.36056 35.15 1.569 7.916 3.6017 6.348 916<br>7. 0.33376 42.418 1.322 6.163 3.9016 4.105 883<br>6. 0.36056 35.15 1.569 7.916 3.6017 6.348 916<br>7. 0.33376 45.26 1.703 11.780 5.345 9.418 886<br>7. 0.36056 35.15 1.569 7.916 3.617 6.348 916<br>7. 0.36375 45.22 1.90 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>1</sub> 7.1319 <sub>5</sub> 7.8720 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>1</sub> 7.1319 <sub>5</sub> 7.8720 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>1</sub> 7.1319 <sub>5</sub> 7.8720 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>1</sub> 7.1319 <sub>5</sub> 7.8720 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>1</sub> 7.1319 <sub>5</sub> 7.8720 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>2</sub> 6.3958 7.2020 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>2</sub> 6.3958 7.2020 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>2</sub> 6.3958 7.2020 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>2</sub> 6.3958 7.2020 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>2</sub> 6.3958 7.2020 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>2</sub> 6.3958 7.2020 13.006 15.599 7.6567 9.1425 14.077 16.153<br>10 <sup>3</sup> m <sub>2</sub> 6.3958 7.2020 13.006 15.599 7.6567 9.1425 14.077 16.153<br>1.03088 41.83 1.737 10.664 4.681 7.897 787 | 2.                        | 0.34474                        | $\bar{29} \cdot \bar{08}$ | 1.463                | 7.255                  | 3.736                          | 4.53                               | 88 682             |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.                        | 0.33621                        | 38.85                     | 1.629                | 10.419                 | $5 \cdot 229_{s}$              | 6.88                               | 81 670             |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>4</b> .                | 0.32984                        | 47.99                     | 1.761                | 13.238                 | 6.525                          | 9.17                               | 73 670             |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.<br>6.                  | 0.33714                        | 24·38<br>35·41            | 1.350                | 0·217<br>7·997         | 3.315                          | 3·04<br>5•50                       | ED 000<br>17 693   |                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.                        | 0.33062                        | 45.62                     | 1.742                | 11.892                 | 5.836                          | 8.38                               | 679                |                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                |                           |                      |                        |                                |                                    | 677.0              | $0 \pm 4.4$        |
| 1. 0.36591 22.36 1308 5.790 3.009 3.508 774<br>2. 0.36565 28.97 1.457 7.219 3.602 4.8475 776<br>3. 0.34776 38.71 1.622 10.366 5.037 7.323 765<br>4. 0.34121 47.80 1.752 13.171 6.312 9.716 757<br>5. 0.36307 24.29 1.345 6.187 3.193 3.815 755<br>6. 0.34871 35.30 1.590 7.956 3.8415 5.934 783<br>7. 0.34205 45.47 1.730 11.836 5.656 8.842 761<br>767.3 $\pm 4.5$<br>767.3 $\pm 4.5$<br>1. 0.37768 22.19 1.319 5.741 2.7535 4.015 (995)<br>2. 0.36877 28.85 1.431 7.190 3.406 5.178 900<br>3. 0.35964 38.52 1.597 10.317 4.755 7.834 895<br>4. 0.35289 47.57 1.725 13.108 5.963 10.3688 884<br>5. 0.37546 24.18 1.322 6.163 3.016 4.105 883<br>6. 0.36056 35.15 1.569 7.916 3.617 6.348 916<br>7. 0.35376 45.26 1.703 11.780 5.345 9.418 886<br>8. 0.35057 50.72 1.768 13.806 6.253 11.123 878<br>8. 0.35057 50.72 1.768 13.266 7 8.111 11.849 13.265<br>( $E - E_{0}$ ) $10^{3}I$ $10^{4}[H^+]$ $10^{8}[HPh^-]$ $10^{4}[Ph^{2-]}$ $10^{4}[MPh]$ $K$<br>At 0°<br>1. 0.31853 25.62 1.398 5.953 2.856 3.737 (718)<br>2. 0.31451 28.59 1.493 6.524 3.011 4.477 768<br>3. 0.30398 41.83 1.737 10.664 4.681 7.897 767<br>4. 0.29863 50.16 1.859 12.717 5.494 9.845 753<br>5. 0.31640 27.22 1.452 6.366 2.984 4.194 751<br>6. 0.30816 34.70 1.621 7.518 3.3615 5.573 766<br>7. 0.29948 47.59 1.841 11.467 4.926 9.047 771<br>8. 0.29048 53.57 1.909 13.131 5.632 10.432 746<br>760 $\pm 4.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                         | 0.00501                        | 22.84                     | 1.000                | At 35°                 | • • • • •                      |                                    |                    |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. 2                      | 0.35656                        | 22·36<br>28·07            | 1.308                | 5·790<br>7.910         | 3.609                          | 3.50                               | )8 774<br>17 776   |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.<br>3.                  | 0.34776                        | 38.71                     | 1.622                | 10.366                 | 5.037                          | 7.32                               | 23 765             |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.                        | 0.34121                        | 47.80                     | 1.752                | 13.171                 | 6.312                          | 9.7                                | 16 757             |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.                        | 0.36307                        | 24·29                     | 1.345                | 6.187                  | 3.193                          | 3.81                               | 5 755              |                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.<br>7                   | 0.34871                        | 35.30                     | 1.590                | 7.956                  | 3.841                          | 5.93                               | 84 783             |                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.                        | 0.94200                        | 40.47                     | 1.730                | 11.990                 | 9.090                          | 0.94                               | 101 767.           | 3 + 4.5            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                |                           |                      | At 45°                 |                                |                                    |                    | ·                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.                        | 0.37768                        | 22.19                     | 1.319                | 5.741                  | 2.753                          | <u>4</u> ∙01                       | l5 (995)           |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.                        | 0.36877                        | 28.85                     | 1.431                | 7.190                  | 3.406                          | 5.17                               | 78 900             |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J.<br>4.                  | 0.35289                        | 47.57                     | 1.597                | 13.108                 | 4.755                          | 7.83<br>10.36                      | 14 890<br>18 884   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.                        | 0.37546                        | 24.18                     | 1.322                | 6.163                  | 3.016                          | 4.10                               | 5 883              |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.                        | 0.36056                        | 35.15                     | 1.569                | 7.916                  | 3.617                          | 6·34                               | 8 916              |                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.                        | 0.35376                        | 45·26                     | 1.768                | 11.780                 | 5.345                          | 9.41                               | .8 886             |                    |
| $Nickel \ phthalate$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.                        | 0.20001                        | 30.72                     | 1.108                | 13.800                 | 0.293                          | 11.12                              | /3 878<br>891√2    | $7 \pm 5.1$        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                |                           | Nicl                 | kel phthalate          |                                |                                    |                    | . <u>т</u> от      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | 1                              | 2                         | 3                    | 4                      | 5                              | 6                                  | 7                  | 8                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $10^{3}m_{1}$             | 7.1319 <sub>5</sub>            | 7.8720                    | 13.006               | 15.599                 | 7.6567                         | 9.1425                             | 14·077             | 16.153             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $10^{3}m_{2}$             | 6.3958                         | 7.2026                    | 10.185               | 12.261                 | 6.7915                         | 8.9111                             | 11.849             | 13.265             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                         | $(E - E_0)$                    | 10³I                      | 10 <sup>4</sup> [H+] | 10 <sup>3</sup> [HPh-] | $10^{4}$ [Ph <sup>2</sup>      | -] 104[M                           | Ph]                | K                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | 0.01070                        |                           |                      | At 0°                  |                                |                                    |                    |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.                        | U-31853                        | 25.62                     | 1.398                | 5.953                  | 2.856                          | 3.73                               | 87 (718)           |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>3</b> .                | 0.30398                        | 20-09<br>41·83            | 1.493                | 0°024<br>10•664        | 3.011<br>4.681                 | 4.47                               | 7 767              |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>4</b> .                | 0.29863                        | 50.16                     | 1.859                | 12.717                 | 5.494                          | 9.84                               | 5 753              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.                        | 0.31640                        | 27.22                     | 1.452                | 6.366                  | 2.984                          | 4.19                               | 4 751              |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | б.<br>7                   | 0.30816                        | 34·70                     | 1.621                | 7.518                  | 3·3615                         | 5.57                               | 3 766              |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.                        | 0.29948                        | 47.09<br>53.57            | 1·841<br>1.900       | 11·467<br>13.191       | 4·926<br>5.629                 | 9·04<br>10.49                      | 771<br>9 776       |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                |                           |                      | 10 101                 | 5 002                          | 10 40                              | 760 -              | ± 4·4              |

|    |                  |               | TABLE | 2. (Continue       | d).             |                    |                  |
|----|------------------|---------------|-------|--------------------|-----------------|--------------------|------------------|
|    |                  |               |       | At 15°             |                 |                    |                  |
| 1. | 0.33488          | 25.53         | 1.474 | 5.882              | 2.902           | 4.086              | 798              |
| 2. | 0.33088          | 28.51         | 1.559 | 6.454              | <b>3</b> ⋅095   | 4.776              | 824              |
| 3. | 0.31979          | 41.71         | 1.815 | 10.545             | 4.818           | 8·394              | 823              |
| 4. | 0.31416          | 50.01         | 1.942 | 12.573             | 5.660           | 10.444             | 808              |
| 5. | 0.33279          | 27.13         | 1.521 | 6.295              | 3.055           | 4.512              | 815              |
| 6. | 0.32415          | 34.60         | 1.596 | $7 \cdot 432$      | $3 \cdot 450$   | 5.949              | 825              |
| 7. | 0.31504          | 47.44         | 1.925 | 11.334             | 5.069           | 9.608              | 828              |
| 8. | 0.31180          | 53.41         | 1.994 | 12.981             | 5.807           | 11.050             | 799              |
|    |                  |               |       |                    |                 |                    | $815 \pm 5.0$    |
|    |                  |               |       | At 25°             |                 |                    |                  |
| 1. | 0.34637          | 25.46         | 1.489 | 5.846              | 2.858           | 4.314              | 876              |
| 2. | 0.34222          | $28 \cdot 43$ | 1.576 | 6.413              | 3.047           | 5.035              | 903              |
| 3. | 0.33075          | 41.57         | 1.835 | 10.475             | $4.749_{5}$     | 8.824              | 903              |
| 4. | 0.32509          | 49.89         | 1.953 | 12.501             | 5.621           | 10.846             | 870              |
| 5. | 0.34422          | 27.06         | 1.537 | 6.257              | 3.009           | 4.758              | 894              |
| 6. | 0.33523          | 34.50         | 1.717 | 7.381              | 3·391₅          | 6.273              | 908              |
| 7. | 0.32581          | 47.29         | 1.949 | 11.253             | 4·990           | 10.104             | 911              |
| 8. | 0.32262          | 53.28         | 2.007 | 12.904             | 5.761           | 11.488             | (863)            |
|    |                  |               |       |                    |                 |                    | $895 \pm 6.4$    |
|    |                  |               |       | At 35°             |                 |                    |                  |
| 1. | 0.35821          | 25.37         | 1.483 | 5.816              | 2.752           | 4.570              | 987              |
| 2. | 0.35392          | 28.33         | 1.563 | 6.379              | 2.919           | $5.327_{5}$        | 1002             |
| 3. | 0.34235          | 41.47         | 1.812 | 10.434             | $4.631_{5}$     | 9·133 <sup>™</sup> | 986              |
| 4. | 0.33623          | 49.69         | 1.948 | $12 \cdot 426$     | $5.419^{\circ}$ | 11.419             | 980              |
| 5. | 0.35606          | 26.97         | 1.527 | 6.227              | 2.908           | 5.002              | 996              |
| 6. | 0.34670          | 34.39         | 1.711 | 7.340              | 3.268           | $6.601_{5}$        | (1019)           |
| 7. | 0.33723          | 47.17         | 1.926 | 11.208             | 4.865           | 10.444             | 995              |
| 8. | 0.33363          | 53.07         | 2.006 | 12.820             | 5.540           | 12.126             | 981              |
|    |                  |               |       |                    |                 |                    | $990 \pm 3.5$    |
|    |                  |               |       | At 45°             |                 |                    |                  |
| 1. | 0.37038          | 25.27         | 1.462 | 5.788              | 2.591           | 4.859              | 1144             |
| 2. | 0 <b>·366</b> 00 | 28.22         | 1.546 | 6.349              | 2.768           | 5.620              | 1169             |
| 3. | 0.35400          | 41.27         | 1.788 | 10.377             | $4.360_{5}$     | 9.679              | 1145             |
| 4. | 0.34767          | 49.46         | 1.924 | 12.354             | 5.101           | 12.086             | 1139             |
| 5. | 0.36817          | 26.86         | 1.505 | 6.197              | 2.739           | 5.309              | 1153             |
| 6. | 0.35850          | 34.26         | 1.688 | 7·301 <sub>5</sub> | 3.078           | 6.971              | 1175             |
| 7. | 0.34870          | <b>46</b> ·96 | 1.902 | 11.143             | 4.579           | 11.043             | 1155             |
| 8. | 0.34496          | $52 \cdot 82$ | 1.984 | 12.742             | 5.210           | 12.835             | 1139             |
|    |                  |               |       |                    |                 |                    | $1152.4 \pm 5.3$ |

The  $\log_{10} K$  values of the oxalates,<sup>9</sup> malonates,<sup>10</sup> and succinates <sup>11</sup> of manganese, cobalt, and nickel at 25°, along with those for the phthalates, are given in Table 3. The stabilities decrease along the series oxalate, malonate, and succinate, and the ring size increases from 5-membered to 7-membered. However, in the case of phthalate, steric effects favour the orientation of the two carboxyl groups nearer to each other in a planar structure, and the stability of the phthalate of each metal is greater than that of the corresponding succinate. Also, the increase in stability found for the oxalates and the

#### TABLE 3.

#### Stabilities of transition-metal dicarboxylates at 25°.

| $\operatorname{Log_{10}} K$ | Oxalate | Malonate      | Succinate     | Phthalate     |
|-----------------------------|---------|---------------|---------------|---------------|
| Mn <sup>2+</sup>            | 3.967   | 3.193         | $2 \cdot 265$ | 2.741         |
| Co <sup>2+</sup>            | 4.791   | 3.758         | 2.217         | $2 \cdot 831$ |
| Ni <sup>2+</sup>            | 5.158   | <b>4</b> ·100 | 2.344         | 2.952         |

malonates in the series Mn, Co, and Ni is observed for the phthalates but not for the succinates.

Plots of  $\log_{10} K$  against  $T^{-1}$  shown in the Figure are not linear, indicating that  $\Delta C_p$ for complex formation is appreciable. This is similar to the well-known observations on

McAuley and Nancollas, J., 1961, 2215.
Nair and Nancollas, J., 1961, 4367.
McAuley and Nancollas, J., 1961, 4458.

dissociation of weak acids. For complex-forming reactions of metals values of  $\Delta C_p$  have been reported for transition-metal oxalates,<sup>8</sup> malonates,<sup>10</sup> and succinates.<sup>11</sup> Since  $\Delta H$ varies appreciably with temperature, the variation of  $\log_{10} K$  can be represented as a quadratic in T,

$$\log_{10} K = a + bT + cT^2.$$

The values of a, b, and c obtained by the method of least squares from the K values at all



the five temperatures are given in Table 4. The values of K calculated from them are not more than 1.5% different from the observed values.

TABLE 4.

Parameters for temperature-dependence of  $\log_{10} K$ .

|      | a     | $-10^{2}b$ | 10 <sup>5</sup> c |
|------|-------|------------|-------------------|
| MnPh | 6·365 | 2.975      | 5.897             |
| CoPh | 5.690 | 2.374      | 4.752             |
| NiPh | 7.795 | 3.867      | 6.912             |

The thermodynamic functions  $\Delta G$ ,  $\Delta H$ ,  $\Delta C_p$ , and  $\Delta S$  for the complex formation were calculated from the relations,  $\Delta G = -2.3026 \mathbf{R}T \log_{10} K$ ,  $\Delta H = 2.3026 \mathbf{R}T^2 (b + 2cT)$ ,  $\Delta C_p = 4.6052 \mathbf{R}T (b + 3cT)$ , and  $\Delta S = (\Delta H - \Delta G)/T$ , and are given in Table 5. Un-

## TABLE 5.

### Thermodynamic functions.

|                                                | $\Delta H$                  | $-\Delta G$                 | $\Delta S$                                    | $\Delta C$                 |
|------------------------------------------------|-----------------------------|-----------------------------|-----------------------------------------------|----------------------------|
| Reaction                                       | (kcal. mole <sup>-1</sup> ) | (kcal. mole <sup>-1</sup> ) | (cal. deg. <sup>-1</sup> mole <sup>-1</sup> ) | (cal. deg. <sup>-1</sup> ) |
| $Mn^{2+} + Ph^{2-} \longrightarrow MnPh$       | 2.20 + 0.05                 | $3.739 \pm 0.006$           | $19.9 \pm 0.3$                                | $63 \pm 20$                |
| $Co^{2+} + Ph^{2-} \longrightarrow CoPh$       | $1.87 \pm 0.05$             | $3.860 \pm 0.004$           | $19.2 \pm 0.2$                                | $51 \pm 15$                |
| $Ni^{2+} + Ph^{2-} \longrightarrow NiPh \dots$ | $1.76_{5} \pm 0.05$         | $4.026 \pm 0.005$           | $19.4 \pm 0.3$                                | $68 \pm 20$                |

certainties in the last three quantities were estimated by using different combinations of experimental K values at three temperatures in the experimental range for the calculation of the parameters a, b, and c.  $\Delta C_p$  is subject to great uncertainties.

 $\Delta S_{hyd}$ (MPh) may be obtained from the relation

$$\Delta S_{\rm hyd}(\rm MPh) = \Delta S - \Delta S_{\rm g}(\rm MPh) + \Delta S_{\rm hyd}(\rm M^{2+}) + \Delta S_{\rm hyd}(\rm Ph^{2-}),$$

where  $\Delta S_g$  and  $\Delta S_{hyd}$  are the gas and the hydration entropies of the species indicated.  $\Delta S_g$  was calculated by assuming a planar model for the metal phthalate, and the method of calculation has been described elsewhere.<sup>12</sup>  $S^{\circ}$  for manganese ion is that obtained by Walkley; <sup>13</sup>  $S^{\circ}$  for cobalt and nickel ions are those evaluated by Staveley and Randall <sup>14</sup> ( $S^{\circ}$  values are -18, -22, and -23 cal. deg.<sup>-1</sup> mole<sup>-1</sup> for Mn<sup>2+</sup>, Co<sup>2+</sup>, and Ni<sup>2+</sup>, respectively).  $\Delta S_{hyd}(Ph^{2-})$  was obtained by interpolation on a plot of  $\Delta S_{hyd}$  of similar bivalent anions against  $r^{-1}$ , the latter being calculated from the ionic mobilities of the respective ions by applying Stokes's law.  $S^{\circ}(Ph^{2-})$  was obtained as 4.6 cal. deg.<sup>-1</sup> mole<sup>-1</sup>. Table 6 gives the entropy values.

| TABLE | 6 |
|-------|---|
| TUDLE | U |

Entropy values (cal. deg.<sup>-1</sup> mole<sup>-1</sup>).

| Species | $\Delta S$   | $S_{g}(MPh)$       | $S^{\circ}(MPh)$                                                                                                                                                | $-\Delta S_{hyd}(MPh)$                                                                                                                                                                                                                             | r <sub>+</sub> (Å) 14                                                                                                                                                                                                                                                                                            |
|---------|--------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 19.9         | 73.5               | 6.5                                                                                                                                                             | 67.0                                                                                                                                                                                                                                               | 0.80                                                                                                                                                                                                                                                                                                             |
|         | $19 \cdot 2$ | <b>73</b> ·6       | 1.8                                                                                                                                                             | 71.8                                                                                                                                                                                                                                               | 0.72                                                                                                                                                                                                                                                                                                             |
|         | 19.4         | <b>73</b> .6       | 1.0                                                                                                                                                             | 72.6                                                                                                                                                                                                                                               | 0.69                                                                                                                                                                                                                                                                                                             |
|         | Species      | Species         ΔS | $\begin{array}{cccc} {\rm Species} & \Delta S & S_{\rm g}({\rm MPh}) \\ \hline & & 19.9 & 73.5 \\ \hline & & 19.2 & 73.6 \\ \hline & & 19.4 & 73.6 \end{array}$ | $\begin{array}{ccccccc} {\rm Species} & \Delta S & S_{\rm g}({\rm MPh}) & S^{\circ}({\rm MPh}) \\ \hline & & 19\cdot9 & 73\cdot5 & 6\cdot5 \\ \hline & & 19\cdot2 & 73\cdot6 & 1\cdot8 \\ \hline & & 19\cdot4 & 73\cdot6 & 1\cdot0 \\ \end{array}$ | $\begin{array}{cccccccc} {\rm Species} & \Delta S & S_{\rm g}({\rm MPh}) & S^{\circ}({\rm MPh}) &\Delta S_{\rm hyd}({\rm MPh}) \\ \hline & & 19\cdot9 & 73\cdot5 & 6\cdot5 & 67\cdot0 \\ \hline & & 19\cdot2 & 73\cdot6 & 1\cdot8 & 71\cdot8 \\ \hline & & 19\cdot4 & 73\cdot6 & 1\cdot0 & 72\cdot6 \end{array}$ |

 $\Delta S$  for the formation of the phthalate complex is essentially the same for all the three cations and is found to be of the same order as for their succinates <sup>11</sup> (18—20 cal. deg.<sup>-1</sup> mole<sup>-1</sup>). The enthalpy change  $\Delta H$  opposes the formation reaction, as was reported for other dicarboxylates. However, this opposition is less for phthalates than for the succinates, thereby leading to a larger  $-\Delta G$  value for the phthalate formation. The reaction occurs because of the high entropy gain of the water molecules in the field of the charged ions, resulting from charge neutralisation when the complex is formed. Williams <sup>15</sup> has suggested that for bivalent cations the heats of hydration, as well as the heats of formation of their complexes, could be represented by an empirical equation combining electrostatic and covalent interaction, together with additional stabilisation due to the different available bonding orbitals of the cations. Thus

 $-\Delta H = A(z/r_{+}) + BI_{02} - C(1/r_{+}^{3})$ 

where z is the cationic charge,  $I_{02}$  the ionisation potential, and A, B, and C are arbitrary constants. When the entropy of formation of a complex is small and the enthalpy term dominant, e.g., with neutral ligands, the stability follows the same order as the enthalpy change for a series of cations forming complexes with the same ligand. With the dicarboxylates, however, the formation reaction is endothermic and the interaction may be mainly electrostatic rather than covalent;  $\Delta H$  is less unfavourable the smaller the value of  $r_{+}$ .  $-\Delta S_{hyd}$  (MPh) follows the same trend as  $r_{+}^{-1}$ , and is slightly greater than the corresponding term for the succinates <sup>11</sup> (64·4—69·5); this probably indicates less charge neutralisation in the case of the phthalates.

One of us (I. R. D.) gratefully acknowledges the award of a Research Assistantship at the College.

College of Advanced Technology, Gosta Green, Birmingham, 4.

[Received, December 22nd, 1961.]

<sup>12</sup> Nair and Nancollas, *J.*, 1958, 3706.

- <sup>13</sup> Walkley, J. Electrochem. Soc., 1948, **93**, 316; 1948, **94**, 41.
- <sup>14</sup> Staveley and Randall, Discuss. Faraday Soc., 1958, 26, 157.
- <sup>15</sup> Williams, J. Phys. Chem., 1954, 58, 121.