455. Studies on Metal Complexes in Solution. Part I. Phthalates of Some Transition Metals.

By I. R. Desai and V. S. K. Nair.

Thermodynamic stability constants of the $1: 1$ complexes of manganese, cobalt, and nickel ions with the phthalate ion have been determined by a precise potentiometric method employing a Harned-type cell, at temperatures in the range $0-45^{\circ}$. The thermodynamic quantities, $\Delta G, \Delta H$, and ΔS for the reaction M ${ }^{2+}+o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2}\right)_{2}{ }^{2-} \rightleftharpoons o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2}\right)_{2} \mathrm{M}$, have been derived. Also from the variation of ΔH with temperature, ΔC_{p} for the reaction has been estimated.

In other studies on the thermodynamics of ion association, ${ }^{1}$ ion pairs of relatively low stability have been investigated. We have extended the studies to more stable complexes of chelate type and followed the effects of substitution and configurational factors on the thermodynamic properties of the complexes. Of the aromatic bivalent anions, phthalate was chosen because it is available in a pure form and because of the fairly high solubility of its complexes with bivalent metals. By taking a higher proportion of M^{2+} to phthalate, species such as $\mathrm{M}\left[\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2}\right)_{2}\right]_{2}{ }^{2-}$ can be avoided, and the study limited to the $1: 1$ species. The Harned-type cell

$$
\mathrm{H}_{2}, \mathrm{Pt} \mid \mathrm{KHph}^{2} \text { halate }, \mathrm{MCl}_{2}|\mathrm{AgCl}| \mathrm{Ag}
$$

has been used for studying manganese, cobalt, and nickel phthalates.

[^0]
Experimental

Stock solutions prepared from " AnalaR " metal chlorides were standardised by gravimetric analysis as silver chloride; agreement between duplicate estimations was better than $\pm \mathbf{0 . 0 2 \%}$. Stock solutions of " AnalaR " potassium hydrogen phthalate were prepared by weight. Exactly 0.01 m -hydrochloric acid, prepared from constant-boiling acid, was used in the standardisation of the silver-silver chloride electrodes prepared as described before. ${ }^{2}$ The apparatus and procedure were similar to those described previously. ${ }^{2}$ Equilibrium was attained only very slowly at the start of each run, so the cells were left overnight at 0° to come to equilibrium and the experiments completed for other temperatures the following day. Once equilibrium had been obtained at one temperature 1.5 hours were required for a constant e.m.f. to be reached at another temperature. E.m.f. readings remained constant within $30 \mu \mathrm{v}$ for more than 0.5 hr . Since there was no drift in the e.m.f. the chance of interaction between the phthalate and the hydrogen was discounted.

Results and Discussion

Accurate values for the dissociation of phthalic acid over the range $0-60^{\circ}$ are available from the work of Hamer et al. ${ }^{3}$ who used the cell *

$$
\mathrm{H}_{2}, \mathrm{Pd} \mid \mathrm{H}_{2} \mathrm{Ph}, \mathrm{KHPh}\left(\text { or } \mathrm{KHPh}, \mathrm{~K}_{2} \mathrm{Ph}\right), \mathrm{KCl}|\mathrm{AgCl}(\mathrm{~s})| \mathrm{Ag}(\mathrm{~s})
$$

The values of the thermodynamic dissociation constants of phthalic acid obtained by them and used in this work are given in Table 1. In the cell

$$
\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{KHPh}\left(\mathrm{~m}_{1}\right), \mathrm{MCl}_{2}\left(\mathrm{~m}_{2}\right)\right| \mathrm{AgCl} \mid \mathrm{Ag}
$$

the concentration of hydrogen ions is given by

$$
-\log \left[\mathrm{H}^{+}\right]=\left(E-E^{0}\right) / k+\log _{10} 2 m_{2}+\log _{10} \gamma_{\mathrm{H}^{+}} \gamma_{\mathrm{Cl}^{-}}
$$

where E is the corrected e.m.f., m represents molality, $k=2 \cdot 3026 \boldsymbol{R} T / F$, and γ is activity coefficient. For the concentrations of various ionic species one can write

$$
\begin{aligned}
m_{1} & =\left[\mathrm{H}_{2} \mathrm{Ph}\right]+\left[\mathrm{HPh}^{-}\right]+\left[\mathrm{Ph}^{2-}\right]+[\mathrm{MPh}], \\
\text { and } m_{2} & =\left[\mathrm{M}^{2+}\right]+[\mathrm{MPh}] .
\end{aligned}
$$

Table 1.

	Temp.	0°	15°	25°	35°	45°
$1^{10} K_{1}$		$1 \cdot 190$	$1 \cdot 157$	$1 \cdot 123$	1.078	1.027
$10^{6} K_{2}$		3.696	3.934	3.906	3.740	3.454

For electroneutrality,

$$
\left[\mathrm{H}^{+}\right]+2\left[\mathrm{M}^{2+}\right]+m_{1}=2 m_{2}+\left[\mathrm{HPh}^{-}\right]+2\left[\mathrm{Ph}^{2-}\right]+\left[\mathrm{OH}^{-}\right]
$$

in which $\left[\mathrm{OH}^{-}\right]$is negligible at the pH 's obtained.
K_{1} and K_{2} are the thermodynamic first and second dissociation constants of phthalic acid. Brannan and Nancollas ${ }^{4}$ have shown that for ion association between nickel and substituted malonate ions the Davies equation ${ }^{5}$

$$
-\log \gamma_{z}=A z^{2}\left[I^{\frac{1}{2}} /\left(1+I^{\frac{1}{2}}\right)-0 \cdot 2 I\right]
$$

can be used for computing activity coefficients up to an ionic strength of $0 \cdot 2 \mathrm{~m}$. In the present work, therefore, I being always less than $0 \cdot 1 \mathrm{~lm}$, the Davies equation has been used. Ionic strength,

$$
I=\frac{1}{2}\left\{\left[\mathrm{H}^{+}\right]+6 m_{2}-3 m_{1}+\left[\mathrm{HPh}^{-}\right]\left(5+8 K_{2} /\left[\mathrm{H}^{+}\right] \gamma_{2}+4\left[\mathrm{H}^{+}\right] \gamma_{1}^{2} / K_{1}\right)\right\}
$$

[^1]Successive approximations of the above equations to constant ionic strength enabled the various ionic concentrations to be evaluated; the stability constant of MPh was calculated from the relation

$$
K=[\mathrm{MPh}] /\left[\mathrm{M}^{2+}\right]\left[\mathrm{Ph}^{2-}\right] \gamma_{2}{ }^{2} .
$$

Table 2 gives the results for manganese, cobalt, and nickel phthalates for all temperatures; the last column shows the constancy of the K values. At any one temperature the deviation among the K values is always less than 1%. There are only very scanty recorded data on stability constants of bivalent metal phthalates; * as would be expected the $\log _{10} K$ values of all these three transition-metal ions are higher than the corresponding values for barium (2.33) and calcium ${ }^{7}(2 \cdot 43)$ at 25°. The K values increase in the order $\mathrm{Mn}<\mathrm{Co}<\mathrm{Ni}$, as observed by Irving and Williams ${ }^{8}$ for a large number of ligands.

Table 2.

Manganese phthalate							
		1	2	3	4	5	6
	n_{1}	8.9623	12.942	$16 \cdot 490$	$9 \cdot 9301$	13.784	17.939
		$8 \cdot 8445$	$9 \cdot 4789$	11.425	8.9468	$10 \cdot 598$	$12 \cdot 487$
	$\left(E-E_{0}\right)$	$10^{3} I$	$10^{4}\left[\mathrm{H}^{+}\right]$	$10^{3}\left[\mathrm{HPh}^{-}\right]$	$10^{4}\left[\mathrm{Ph}^{2-}\right]$	10^{4} [MPh]	K
At 0°							
1.	0.31163	34.85	1.410	7.545	3.882	$3 \cdot 909$	(461)
2.	$0 \cdot 30947$	$40 \cdot 49$	$1 \cdot 472$	10.908	$5 \cdot 602$	5-306	444
3.	0.30417	$49 \cdot 53$	1.573	13.845	$7 \cdot 041$	6.971	434
4.	0.31163	36.14	1.401	$8 \cdot 387{ }_{5}$	$4 \cdot 387$	$4 \cdot 026$	423
5.	0.30637	44.57	1.522	11.587	$5 \cdot 910$	$5 \cdot 8385$	437
6.	$0 \cdot 30170$	$54 \cdot 00$	$1 \cdot 620$	$15 \cdot 031$	$7 \cdot 617$	$7 \cdot 734$	429
At 15° -							
1.	$0 \cdot 32802$	$34 \cdot 81$	$1 \cdot 463$	$7 \cdot 479$	$4 \cdot 030$	$4 \cdot 116$	483
2.	$0 \cdot 32538$	$40 \cdot 35$	1.550	$10 \cdot 787$	$5 \cdot 718$	$5 \cdot 834$	497
3.	0.31983	$49 \cdot 36$	$1 \cdot 656$	$13 \cdot 689$	$7 \cdot 201$	$7 \cdot 6295$	484
4.	$0 \cdot 32761$	36.03	$1 \cdot 477$	$8 \cdot 293$	$4 \cdot 467$	4.457	477
5.	$0 \cdot 32209$	$44 \cdot 41$	$1 \cdot 604$	$11 \cdot 454$	6.028	$6 \cdot 423$	490
6.	0.31715	53.79	1.709	14.855	$7 \cdot 767$	$8 \cdot 509$	483
At 25°							
1.	$0 \cdot 33920$	$34 \cdot 72$	1.484	$7 \cdot 432$	3.958	$4 \cdot 436$	544
2.	0.33646	$40 \cdot 21$	1.571	$10 \cdot 718$	$5 \cdot 622$	6.283	560
3.	0.33076	$49 \cdot 19$	$1 \cdot 677$	13.604	$7 \cdot 093$	$8 \cdot 173$	542
4.	$0 \cdot 33869$	$35 \cdot 90$	1.503	$8 \cdot 236$	$4 \cdot 371$	$4 \cdot 851$	545
5.	0.33281	$44 \cdot 20$	1.643_{5}	11.360	$5 \cdot 854$	$7 \cdot 089$	574
6.	$0 \cdot 32798$	53.60	1.733	14.758	$7 \cdot 644$	$9 \cdot 128$	543
At 35°							
1.	0.35076	34.59	$1 \cdot 481$	$7 \cdot 393$	$3 \cdot 810$	4.776	626
2.	0.34822	$40 \cdot 10$	1.553	$10 \cdot 679$	$5 \cdot 476$	$6 \cdot 615$	623
3.	$0 \cdot 34200$	48.96	1.678	13.524	6.814	8.854	631
4.	$0 \cdot 35039$	$35 \cdot 80$	1.492	8.201	$4 \cdot 237$	$5 \cdot 156$	614
5.	$0 \cdot 34468$	$44 \cdot 13$	$1 \cdot 610$	$11 \cdot 337$	$5 \cdot 769$	$7 \cdot 273$	614
6.	$0 \cdot 33934$	53.41	$1 \cdot 7205$	14.692	$7 \cdot 418$	$9 \cdot 678$	$\begin{aligned} & 612 \\ & 620 \cdot 0 \pm 3 \cdot 3 \end{aligned}$
At 45° -							
1.	$0 \cdot 36287$	34.48	1.451	7.368	3.618	$5 \cdot 080$	720
2.	$0 \cdot 36007$	$39 \cdot 89$	1.532	$10 \cdot 628$	$5 \cdot 160$	$7 \cdot 176$	739
3.	$0 \cdot 35360$	$48 \cdot 69$	$1 \cdot 659$	$13 \cdot 451$	$6 \cdot 409$	$9 \cdot 613$	754
4.	$0 \cdot 36222$	$35 \cdot 63$	1.476	$8 \cdot 158$	3.977	$5 \cdot 622$	735
5.	0.35633	43.90	1.5935	11.275	$5 \cdot 417$	7.926	736
6.	$0 \cdot 35078$	53.09	1.706	$14 \cdot 605$	6.956	10.568	738
							$737 \cdot 0 \pm \mathbf{3 \cdot 3}$

[^2][1962] Studies on Metal Complexes in Solution. Part I. 2363
Table 2. (Continued).

Cobalt phthalate							
	1	2	3	4	5 6	7	8
$10^{3} m_{1}$	$\ldots 6.9630$	$8 \cdot 7632$	$12 \cdot 675$	16.202	$7 \cdot 4545 \quad 9.7523$	$14 \cdot 563$	$3 \quad 17 \cdot 104$
$10^{3} m_{2}$.. 5-3403	$7 \cdot 0530$	$9 \cdot 1875$	11.236	$5.8412 \quad 8.9269$	10.940	012.051
	$\left(E-E_{0}\right)$	$10^{3} I$	$10^{4}\left[\mathrm{H}^{+}\right]$	$10^{3}\left[\mathrm{HPh}^{-}\right]$	$10^{4}\left[\mathrm{Ph}^{2-}\right]$	10^{4} [MPh]	K
At 0°							
1.	$0 \cdot 32519$	$22 \cdot 58$	$1 \cdot 243$	$5 \cdot 908$	$3 \cdot 093$	$2 \cdot 802$	557
2.	$0 \cdot 31685$	$29 \cdot 25$	1.384	$7 \cdot 376$	$3 \cdot 693$	$3 \cdot 936$	565
3.	$0 \cdot 30865$	$39 \cdot 02$	$1 \cdot 564$	10.566	$5 \cdot 053$	$6 \cdot 276$	(596)
4.	$0 \cdot 30303$	$48 \cdot 26$	$1 \cdot 673$	$13 \cdot 453$	$6 \cdot 385{ }_{5}$	8-194	571
5.	$0 \cdot 32271$	$24 \cdot 52$	$1 \cdot 275$	$6 \cdot 316$	$3 \cdot 2875$	$3 \cdot 040$	(540)
6.	$0 \cdot 30987$	$35 \cdot 60$	$1 \cdot 510$	8-132	$3 \cdot 928$	4.927	581
7.	$0 \cdot 30357$	$45 \cdot 83$	$1 \cdot 667$	12.071	$5 \cdot 666$	$7 \cdot 625$	(595)
8.	0.30114	51.48	1.706	14.184	$6 \cdot 729$	$8 \cdot 723$	558
At 15°							
1.	$0 \cdot 34199$	22.51	$1 \cdot 305$	$5 \cdot 847$	$3 \cdot 157$	$3 \cdot 077$	618
2.	$0 \cdot 33332$	$29 \cdot 17$	$1 \cdot 447$	$7 \cdot 297$	$3 \cdot 791$	$4 \cdot 2615$	616
3.	$0 \cdot 32478$	$38 \cdot 92$	$1 \cdot 630$	$10 \cdot 462$	$5 \cdot 220$	$6 \cdot 664$	636
4.	$0 \cdot 31880$	$48 \cdot 12$	$1 \cdot 748$	$13 \cdot 312$	$6 \cdot 583$	$8 \cdot 740$	615
5.	$0 \cdot 33938$	$24 \cdot 45$	$1 \cdot 339$	$6 \cdot 250$	$3 \cdot 357$	$\mathbf{3} 334$	(599)
6.	$0 \cdot 32597$	$35 \cdot 51$	$1 \cdot 579$	$8 \cdot 046$	$4 \cdot 040$	$5 \cdot 279$	628
7.	$0 \cdot 31945$	$45 \cdot 72$	$1 \cdot 736$	11.951	$5 \cdot 862_{5}$	$8 \cdot 067$	632
At 25° - ${ }^{\circ}$							
1.	0.35375	$22 \cdot 44$	$1 \cdot 317$	$5 \cdot 815$	$3 \cdot 115$	$3 \cdot 286$	684
2.	$0 \cdot 34474$	$29 \cdot 08$	$1 \cdot 463$	$7 \cdot 255$	$3 \cdot 736$	$4 \cdot 538$	682
3.	$0 \cdot 33621$	$38 \cdot 85$	$1 \cdot 629$	$10 \cdot 419$	$5 \cdot 229{ }_{5}$	6.881	670
4.	$0 \cdot 32984$	$47 \cdot 99$	$1 \cdot 761$	$13 \cdot 238$	$6 \cdot 525$	$9 \cdot 173$	670
5.	$0 \cdot 35107$	$24 \cdot 38$	$1 \cdot 350$	$6 \cdot 217$	$3 \cdot 315$	$3 \cdot 545$	660
6.	$0 \cdot 33714$	$35 \cdot 41$	$1 \cdot 597$	$7 \cdot 997$	3.980	$5 \cdot 597$	693
7.	$0 \cdot 33062$	$45 \cdot 62$	1.742	11.892	$5 \cdot 836$	-8.387	679
At 35 ${ }^{\circ}$							
1.	$0 \cdot 36591$	$22 \cdot 36$	$1 \cdot 308$	$5 \cdot 790$	$3 \cdot 009$	$3 \cdot 508$	774
2.	$0 \cdot 35656$	$28 \cdot 97$	$1 \cdot 457$	$7 \cdot 219$	$3 \cdot 602$	$4 \cdot 847_{5}$	776
3.	$0 \cdot 34776$	$38 \cdot 71$	$1 \cdot 622$	$10 \cdot 366$	$5 \cdot 037$	$7 \cdot 323$	765
4.	$0 \cdot 34121$	$47 \cdot 80$	$1 \cdot 752$	13.171	$6 \cdot 312$	$9 \cdot 716$	757
5.	$0 \cdot 36307$	$24 \cdot 29$	$1 \cdot 345$	$6 \cdot 187$	$3 \cdot 193$	$3 \cdot 815$	755
6.	$0 \cdot 34871$	$35 \cdot 30$	$1 \cdot 590$	7.956	$3 \cdot 841_{5}$	$5 \cdot 934$	783
7.	$0 \cdot 34205$	$45 \cdot 47$	1.730	$11 \cdot 836$	$5 \cdot 656$	$8 \cdot 842$	761
At 45°							
1.	$0 \cdot 37768$	$22 \cdot 19$	$1 \cdot 319$	$5 \cdot 741$	$2 \cdot 753_{5}$	$4 \cdot 015$	(995)
2.	$0 \cdot 36877$	28.85	1.431	$7 \cdot 190$	$3 \cdot 406$	$5 \cdot 178$	900
3.	$0 \cdot 35964$	$38 \cdot 52$	1.597	$10 \cdot 317$	$4 \cdot 755$	$7 \cdot 834$	895
4.	$0 \cdot 35289$	$47 \cdot 57$	$1 \cdot 725$	$13 \cdot 108$	$5 \cdot 963$	$10 \cdot 368{ }_{5}$	884
5.	$0 \cdot 37546$	24-18	$1 \cdot 322$	$6 \cdot 163$	$3 \cdot 016$	$4 \cdot 105$	883
6.	$0 \cdot 36056$	35.15	$1 \cdot 569$	$7 \cdot 916$	$3 \cdot 617$	$6 \cdot 348$	916
7.	$0 \cdot 35376$	45.26	1.703	$11 \cdot 780$	$5 \cdot 345$	$9 \cdot 418$	886
8.	$0 \cdot 35057$	50.72	$1 \cdot 768$	13.806	$6 \cdot 253$	11-123	878
							$891 \cdot 7 \pm 5 \cdot 1$
Nickel phthalate							
	1	2	3	4	5 6	7	8
$10^{3} m_{1}$	$\ldots 7 \cdot 1319$	$7 \cdot 8720$	13.006	15.599	$7 \cdot 6567 \quad 9 \cdot 1425$	14.077	16•153
$10^{3} m_{2}$... 6.3958	$7 \cdot 2026$	$10 \cdot 185$	12.261	$6.7915 \quad 8.9111$	11.849	$13 \cdot 265$
	$\left(E-E_{0}\right)$	$10^{3} I$	$10^{4}\left[\mathrm{H}^{+}\right]$	$10^{3}\left[\mathrm{HPh}^{-}\right]$	$10^{4}\left[\mathrm{Ph}^{2-}\right]$	10^{4} [MPh]	K
At 0°							
1.	$0 \cdot 31853$	$25 \cdot 62$	1.398	$5 \cdot 953$	$2 \cdot 856$	3.737	(718)
2.	$0 \cdot 31451$	28.59	$1 \cdot 493$	$6 \cdot 524$	$3 \cdot 011$	$4 \cdot 477$	768
3.	$0 \cdot 30398$	41.83	1.737	$10 \cdot 664$	$4 \cdot 681$	$7 \cdot 897$	767
4.	$0 \cdot 29863$	$50 \cdot 16$	1.859	$12 \cdot 717$	$5 \cdot 494$	$9 \cdot 845$	753
5.	$0 \cdot 31640$	$27 \cdot 22$	$1 \cdot 452$	$6 \cdot 366$	$2 \cdot 984$	$4 \cdot 194$	751
6.	$0 \cdot 30816$	34.70	$1 \cdot 621$	$7 \cdot 518$	$3 \cdot 3615$	$5 \cdot 573$	766
7.	$0 \cdot 29948$	$47 \cdot 59$	$1 \cdot 841$	11.467	$4 \cdot 926$	$9 \cdot 047$	771
8.	$0 \cdot 29638$	$\mathbf{5 3} \cdot 57$	1.909	$13 \cdot 131$	$5 \cdot 632$	$10 \cdot 432$	746
							$760 \pm 4 \cdot 4$

Table 2. (Continued).

At $15{ }^{\circ}$							
1.	0.33488	25.53	1.474	5.882	2.902	$4 \cdot 086$	798
2.	$0 \cdot 33088$	28.51	1.559	6.454	3.095	$4 \cdot 776$	824
3.	0.31979	41.71	1.815	10.545	4.818	$8 \cdot 394$	823
4.	0.31416	50.01	1.942	12.573	$5 \cdot 660$	$10 \cdot 444$	808
5.	$0 \cdot 33279$	$27 \cdot 13$	1.521	6.295	3.055	$4 \cdot 512$	815
6.	$0 \cdot 32415$	34.60	1.596	$7 \cdot 432$	$3 \cdot 450$	$5 \cdot 949$	825
7.	$0 \cdot 31504$	$47 \cdot 44$	1.925	11.334	$5 \cdot 069$	$9 \cdot 608$	828
8.	0.31180	53.41	1.994	12.981	5.807	$11 \cdot 050$	$\begin{aligned} & 799 \\ & 815 \pm 5 \cdot 0 \end{aligned}$
At 25°							
1.	$0 \cdot 34637$	$25 \cdot 46$	1.489	$5 \cdot 846$	2.858	$4 \cdot 314$	876
2.	$0 \cdot 34222$	28.43	1.576	6.413	3.047	$5 \cdot 035$	903
3.	0.33075	41.57	1.835	$10 \cdot 475$	$4 \cdot 749_{5}$	8.824	903
4.	0.32509	$49 \cdot 89$	1.953	12.501	$5 \cdot 621$	$10 \cdot 846$	870
5.	$0 \cdot 34422$	$27 \cdot 06$	1.537	$6 \cdot 257$	$3 \cdot 009$	4.758	894
6.	0.33523	34.50	1.717	$7 \cdot 381$	$3 \cdot 391{ }_{5}$	6.273	908
7.	$0 \cdot 32581$	47-29	1.949	11.253	4.990	10.104	911
8.	$0 \cdot 32262$	53.28	$2 \cdot 007$	12.904	$5 \cdot 761$	11-488	(863)
At 35° (${ }^{\circ}$							
1.	0.35821	25.37	$1 \cdot 483$	$5 \cdot 816$	2.752	$4 \cdot 570$	987
2.	0.35392	28.33	1.563	6.379	2.919	$5 \cdot 327_{5}$	1002
3.	0.34235	41.47	1.812	$10 \cdot 434$	$4 \cdot 6315$	$9 \cdot 133$	986
4.	0.33623	$49 \cdot 69$	1.948	$12 \cdot 426$	$5 \cdot 419$	11.419	980
5.	$0 \cdot 35606$	26.97	1.527	6.227	2.908	$5 \cdot 002$	996
6.	$0 \cdot 34670$	$34 \cdot 39$	1.711	$7 \cdot 340$	$3 \cdot 268$	$6 \cdot 601_{5}$	(1019)
7.	$0 \cdot 33723$	47-17	1.926	11.208	$4 \cdot 865$	10.444	995
8.	0.33363	53.07	2.006	$12 \cdot 820$	5.540	$12 \cdot 126$	981
	At 45° (${ }^{\text {a }}$						
1.	0.37038	$25 \cdot 27$	1.462	$5 \cdot 788$	2.591	4.859	1144
2.	$0 \cdot 36600$	28.22	1.546	6.349	$2 \cdot 768$	$5 \cdot 620$	1169
3.	0.35400	41.27	1.788	$10 \cdot 377$	$4.360{ }_{5}$	$9 \cdot 679$	1145
4.	0.34767	$49 \cdot 46$	1.924	12.354	$5 \cdot 101$	12.086	1139
5.	0.36817	26.86	1.505	$6 \cdot 197$	2.739	$5 \cdot 309$	1153
6.	0.35850	$34 \cdot 26$	1.688	$7 \cdot 3015$	$3 \cdot 078$	6.971	1175
7.	$0 \cdot 34870$	46.96	1.902	11.143	$4 \cdot 579$	$11 \cdot 043$	1155
8.	$0 \cdot 34496$	52.82	1.984	$12 \cdot 742$	$5 \cdot 210$	12.835	1139
							$1152 \cdot 4 \pm 5 \cdot 3$

The $\log _{10} K$ values of the oxalates, ${ }^{9}$ malonates, ${ }^{10}$ and succinates ${ }^{11}$ of manganese, cobalt, and nickel at 25°, along with those for the phthalates, are given in Table 3. The stabilities decrease along the series oxalate, malonate, and succinate, and the ring size increases from 5 -membered to 7 -membered. However, in the case of phthalate, steric effects favour the orientation of the two carboxyl groups nearer to each other in a planar structure, and the stability of the phthalate of each metal is greater than that of the corresponding succinate. Also, the increase in stability found for the oxalates and the

Table 3.
Stabilities of transition-metal dicarboxylates at 25°.

	$\log _{10} K$	Oxalate	Malonate	Succinate	Phthalate
Mn^{2+}		3.967	3-193	$2 \cdot 265$	$2 \cdot 741$
Co^{2+}		$4 \cdot 791$	$3 \cdot 758$	$2 \cdot 217$	2.831
$\mathrm{Ni}{ }^{2+}$		5.158	4.100	$2 \cdot 344$	$2 \cdot 952$

malonates in the series Mn, Co, and Ni is observed for the phthalates but not for the succinates.

Plots of $\log _{10} K$ against T^{-1} shown in the Figure are not linear, indicating that ΔC_{p} for complex formation is appreciable. This is similar to the well-known observations on

[^3]dissociation of weak acids. For complex-forming reactions of metals values of ΔC_{p} have been reported for transition-metal oxalates, ${ }^{8}$ malonates, ${ }^{10}$ and succinates. ${ }^{11}$ Since ΔH varies appreciably with temperature, the variation of $\log _{10} K$ can be represented as a quadratic in T,
$$
\log _{10} K=a+b T+c T^{2}
$$

The values of a, b, and c obtained by the method of least squares from the K values at all

Plot of $\log K$ against T^{-1}. A, Ni; B, Co; C, Mn.

the five temperatures are given in Table 4. The values of K calculated from them are not more than $1 \cdot 5 \%$ different from the observed values.

Table 4.
Parameters for temperature-dependence of $\log _{10} K$.

	a	$-10^{2} b$	$10^{5} \mathrm{C}$
MnPh	6.365	2.975	$5 \cdot 897$
CoPh	5.690	2-374	$4 \cdot 752$
NiPh	7.795	3•867	6.912

The thermodynamic functions $\Delta G, \Delta H, \Delta C_{p}$, and ΔS for the complex formation were calculated from the relations, $\Delta G=-2 \cdot 3026 \boldsymbol{R} T \log _{10} K, \Delta H=2 \cdot 3026 \boldsymbol{R} T^{2}(b+2 c T)$, $\Delta C_{p}=4 \cdot 6052 \boldsymbol{R} T(b+3 c T)$, and $\Delta S=(\Delta H-\Delta G) / T$, and are given in Table 5. Un-

Table 5.

Thermodynamic functions.

certainties in the last three quantities were estimated by using different combinations of experimental K values at three temperatures in the experimental range for the calculation of the parameters a, b, and $c . \Delta C_{p}$ is subject to great uncertainties.
$\Delta S_{\mathrm{hyd}}(\mathrm{MPh})$ may be obtained from the relation

$$
\Delta S_{\mathrm{hyd}}(\mathrm{MPh})=\Delta S-\Delta S_{\mathrm{g}}(\mathrm{MPh})+\Delta S_{\mathrm{hyd}}\left(\mathrm{M}^{2+}\right)+\Delta S_{\mathrm{hyd}}\left(\mathrm{Ph}^{2-}\right)
$$

where ΔS_{g} and ΔS_{hyd} are the gas and the hydration entropies of the species indicated. ΔS_{g} was calculated by assuming a planar model for the metal phthalate, and the method
of calculation has been described elsewhere. ${ }^{12} S^{\circ}$ for manganese ion is that obtained by Walkley; ${ }^{13} S^{\circ}$ for cobalt and nickel ions are those evaluated by Staveley and Randall ${ }^{14}$ (S° values are $-18,-22$, and -23 cal . deg. ${ }^{-1} \mathrm{~mole}^{-1}$ for $\mathrm{Mn}^{2+}, \mathrm{Co}^{2+}$, and Ni^{2+}, respectively). $\Delta S_{\mathrm{hyd}}\left(\mathrm{Ph}^{2-}\right)$ was obtained by interpolation on a plot of ΔS_{hyd} of similar bivalent anions against r^{-1}, the latter being calculated from the ionic mobilities of the respective ions by applying Stokes's law. $S^{\circ}\left(\mathrm{Ph}^{2-}\right)$ was obtained as 4.6 cal . deg..$^{-1} \mathrm{~mole}^{-1}$. Table 6 gives the entropy values.

Table 6.
Entropy values (cal. deg. ${ }^{-1}$ mole $^{-1}$).

	Species	ΔS	$S_{\mathrm{g}}(\mathrm{MPh})$	$S^{\circ}(\mathrm{MPh})$	$-\Delta S_{\text {hyd }}(\mathrm{MPh})$	$r_{+}(\AA)^{14}$
MnPh		$19 \cdot 9$	73.5	6.5	$67 \cdot 0$	0.80
CoPh		$19 \cdot 2$	$73 \cdot 6$	1.8	71.8	$0 \cdot 72$
NiPh		$19 \cdot 4$	$73 \cdot 6$	1.0	72.6	$0 \cdot 69$

ΔS for the formation of the phthalate complex is essentially the same for all the three cations and is found to be of the same order as for their succinates ${ }^{11}$ ($18-20$ cal. deg. ${ }^{-1}$ mole^{-1}). The enthalpy change ΔH opposes the formation reaction, as was reported for other dicarboxylates. However, this opposition is less for phthalates than for the succinates, thereby leading to a larger $-\Delta G$ value for the phthalate formation. The reaction occurs because of the high entropy gain of the water molecules in the field of the charged ions, resulting from charge neutralisation when the complex is formed. Williams ${ }^{15}$ has suggested that for bivalent cations the heats of hydration, as well as the heats of formation of their complexes, could be represented by an empirical equation combining electrostatic and covalent interaction, together with additional stabilisation due to the different available bonding orbitals of the cations. Thus

$$
-\Delta H=A\left(z / r_{+}\right)+B I_{02}-C\left(\mathbf{l} / r_{+}{ }^{3}\right)
$$

where z is the cationic charge, I_{02} the ionisation potential, and A, B, and C are arbitrary constants. When the entropy of formation of a complex is small and the enthalpy term dominant, e.g., with neutral ligands, the stability follows the same order as the enthalpy change for a series of cations forming complexes with the same ligand. With the dicarboxylates, however, the formation reaction is endothermic and the interaction may be mainly electrostatic rather than covalent; ΔH is less unfavourable the smaller the value of $r_{+} . \quad-\Delta S_{\text {hyd }}(\mathrm{MPh})$ follows the same trend as $r_{+}{ }^{-1}$, and is slightly greater than the corresponding term for the succinates ${ }^{11}(64 \cdot 4-69 \cdot 5)$; this probably indicates less charge neutralisation in the case of the phthalates.

One of us (I. R. D.) gratefully acknowledges the award of a Research Assistantship at the College.

12 Nair and Nancollas, $J ., 1958,3706$.
${ }^{13}$ Walkley, J. Electrochem. Soc., 1948, 93, 316; 1948, 94, 41.
14 Staveley and Randall, Discuss. Faraday Soc., 1958, 26, 157.
15 Williams, J. Phys. Chem., 1954, 58, 121.

[^0]: ${ }^{1}$ Nancollas, $J ., 1955,1458$.

[^1]: * Throughout this paper, Ph denotes phthalate.
 ${ }^{2}$ Nair and Nancollas, J., 1958, 4144.
 ${ }^{3}$ Hamer, Pinching, and Acree, J. Res. Nat. Bur. Stand., 1945, 35, 539 ; Hamer and Acree, ibid., p. 381.
 ${ }_{4}$ Brannan and Nancollas, Trans. Faraday Soc., 1962, 58, 354.
 ${ }^{5}$ Davies, J., 1938, 2093.

[^2]: * For nickel a value of $2 \cdot 14$ for $\log _{10} K$ at $I=0 \cdot 1 \mathrm{~m}$ has been reported ${ }^{6}$ (which corresponds to the value for $\log _{10} K$ of 3.02) at 25° from a pH -titration method.
 ${ }^{6}$ Yasuda, Suzuki, and Yamasaki, J. Phys. Chem., 1956, 60, 1649.
 7 Topp and Davies, J., 1940, 87.
 ${ }^{8}$ Irving and Williams, J., 1953, 3192.

[^3]: ${ }^{9}$ McAuley and Nancollas, $J ., 1961,2215$.
 10 Nair and Nancollas, $J ., 1961,4367$.
 ${ }^{11}$ McAuley and Nancollas, J., 1961, 4458.

